Российская Ассоциация Репродукции Человека Секция «Клиническая эмбриология»

УТВЕРЖДЕНО «<u>15 » ноября</u> 20<u>21</u> г.

Председатель Совета РАРЧ

Сагамонова К.Ю.

Шурыгина О.В.

Президент РАРЧ

Корсак В.С.

Председатель секции

«Клиническая эмбриология»

Оценка ооцитов и эмбрионов в лаборатории ВРТ

Методические рекомендации

Аннотация: Методические рекомендации подготовлены рабочей группой координационного совета секции «Клиническая эмбриология» РАРЧ и содержат предложения по стандартизации подходов к оценке яйцеклеток и эмбрионов, а также по унификации терминологии и аббревиатур, используемых при оформлении документов в российских лабораториях ВРТ.

Авторы:

Шурыгина Оксана Викторовна председатель «Клиническая секции эмбриология» PAPU, oks-shurygina@yandex.ru Бачурин Алексей Владимирович, bachurin.a.v@gmail.com Бичевая Наталья Константиновна, embriology@mcrm.ru Быстрова Ольга Владимировна, bystrova-ov@avaclinic.ru Веюкова Мария Александровна, veymary@gmail.com Володяев Илья Владимирович, ivolodyaev@gmail.com Доценко Анна Андреевна, iskraimp@rambler.ru Елагин Владимир Викторович, v.v.elagin@gmail.com Жизнин Василий Викторович, 4uter2@mail.ru Кодылева Татьяна Александровна, t.kodyleva@gmail.com Никитин Анатолий Илларионович, nikitinai@yandex.ru Салимов Даниил Фратович, dfsalimov@mail.ru Татищева Юлия Александровна, jul_taty@mail.ru Юткин Евгений Владимирович, yef74@rambler.ru Макарова Наталья Петровна, np.makarova@gmail.com

Оглавление

1.	введение	4
	РЕКОМЕНДУЕМЫЕ СОКРАЩЕНИЯ И УСЛОВНЫЕ ОБОЗНАЧЕНИЯ ДЛЯ ДОКУМЕНТАЦИИ ПНИЧЕСКОЙ ЭМБРИОЛОГИИ	
3.	оценка ооцит-кумулюсных комплексов	7
4.	оценка ооцитов	7
5.	ОБЩИЕ ПРАВИЛА ОЦЕНКИ ЭМБРИОНОВ	8
6.	оценка оплодотворения	9
7.	оценка эмбрионов на стадии дробления	10
8.	ОЦЕНКА ЭМБРИОНОВ НА СТАДИИ КОМПАКТИЗАЦИИ (МОРУЛА)	13
9.	оценка эмбрионов на стадии бластоциты	14
10.	ЗАКЛЮЧЕНИЕ	16
11	ΠΙΛΤΕΡΑΤΎΡΑ	17

1. Введение

На сегодняшний день в мире разработано множество различных классификаций биологического материала в лаборатории вспомогательных репродуктивных технологий (ВРТ), при этом диагностическая ценность некоторых данных, используемых для классификаций, до сих пор дискутабельна с точки зрения влияния на клинические исходы.

К сожалению, в России нет общепринятой утвержденной классификации эмбрионов человека преимплантационных стадий развития, что вызывает значительные трудности при интерпретации как эмбриологических протоколов предыдущих программ в других лечебных учреждениях, так и при анализе сопроводительной документации к биологическому материалу. Данная проблема может быть решена только введением рекомендаций по оценке морфологии ооцитов и эмбрионов и принятием списка условных сокращений. Такая унификация в рамках эмбриологического этапа программ лечения бесплодия методами ВРТ позволит эмбриологам более осознанно подходить к работе с биологическим материалом в программах лечения бесплодия, упростит создание стандартов операционных процедур, а также сделает обмен информацией между специалистами более удобным и объективным.

Цель представленных рекомендаций — стандартизировать работу в эмбриологических лабораториях при оценке биологического материла (ооцит — эмбрион), предоставить информационную поддержку специалистам и обеспечить единообразие составления медицинской документации.

Настоятельно рекомендуется использовать сокращения и систему оценки эмбрионов человека в сопроводительной документации при транспортировке в другие лечебные учреждения, а также в документации, предусмотренной Приказом Минздрава России №803н от 31 июля 2020 г. «О порядке использования вспомогательных репродуктивных технологий, противопоказаниях и ограничениях к их применению».

Однако рекомендации не ограничивают клинических эмбриологов в более подробном описании морфологических особенностей ооцитов и эмбрионов, культивируемых *in vitro*, в своей внутренней документации для более детального описания видимых биологических процессов, а также для интерпретации данных.

При составлении настоящих практических рекомендаций использованы как международные классификации по оценке ооцитов и эмбрионов, действующие регламентирующие документы по BPT, так и устоявшиеся правила и традиции российских эмбриологов.

2. Рекомендуемые сокращения и условные обозначения для документации по клинической эмбриологии

Общие сокращения и термины		
BPT	Вспомогательные репродуктивные технологии	
ЭКО	Экстракорпоральное оплодотворение	
ИКСИ	Интрацитоплазматическая инъекция сперматозоида	
	в цитоплазму ооцита	
Biopsy/биопсия	Биопсия эмбриона для преимплантационных	
-	генетических технологий	
OCC/OKK	Ооцит-кумулюсный комплекс	
ZP	Блестящая оболочка ооцита (зона пеллюцида)	
atr	Состояние атрезии (дегенерации) фолликула и	
	ооцита. Может использоваться для обозначения	
	ооцитов, полученных в дегенеративном состоянии.	
deg	Дегенерация на любой стадии развития — от	
	ооцита до бластоцисты	
stop	Остановка в развитии, прекращение	
	культивирования на любой стадии развития	
	эмбриона	
AH	Вспомогательный хетчинг, выполненный на любой	
	стадии развития	
Сокращения, приняты	е для ооцитов человека	
РВ Полярное тельце		
GV	Незрелый ооцит на стадии зародышевого пузырька	
	(герминативного везикула)	
MI	Незрелый ооцит на стадии метафазы 1-го деления	
	мейоза, не имеет полярного тельца	
MII	Зрелый ооцит на стадии метафазы 2-го деления	
	мейоза, имеет первое полярное тельце	
LPB	Гигантское полярное тельце	
gran	Грануляция цитоплазмы ооцита	
giant	Гигантский ооцит, диаметр клетки более 200 мкм	
vac	Присутствие вакуолей в цитоплазме ооцита	
SER	Наличие в цитоплазме агрегатов гладкого	
	эндоплазматического ретикулума	
Сокращения, приняты	е для зигот	
PN	Пронуклеус	
Z	Зигота	
Сокращения, приняты	е для эмбрионов	
comp	Компактизация (используется для обозначения	
	начала компактизации дробящегося эмбриона)	

cav	Кавитация (используется для обозначения начала
	кавитации компактной морулы)
M	Морула компактная
Mcav	Морула кавитирующая
fr	Наличие цитоплазматических фрагментов
MNB	Мультинуклеация (наличие в бластомере более чем
	одного ядра)
uev	Неравность размера бластомеров
vac	Присутствие вакуолей в цитоплазме клеток
	эмбриона

3. Оценка ооцит-кумулюсных комплексов

В практике клинического эмбриолога оценка ооцит-кумулюсных комплексов проводится с целью выявления наличия ооцита внутри кумулюса или его отсутствия. Прогностическую значимость оценки степени зрелости кумулюса следует признать достаточно низкой.

При оформлении протокола культивирования в соответствующей строке следует указать выбранный метод оплодотворения (ЭКО или ИКСИ).

4. Оценка ооцитов

Морфологическая оценка ооцитов проводится с целью определения их пригодности к использованию в программах ИКСИ/криоконсервации и включает в себя:

- определение степени мейотической зрелости;
- выявление и фиксацию в протоколе морфологических дисморфизмов различных структур ооцита, которые значимо влияют на клинические исходы.

Мейотическую зрелость ооцита определяют по присутствию/отсутствию первого полярного тельца и ядра (зародышевого пузырька) в цитоплазме (рисунок 1).

Необходимо понимать, что зрелый ооцит человека, который имеет максимальные компетенции к дальнейшему развитию, обладает следующими характеристиками: средний диаметр 120 мкм, сферическая форма, блестящая оболочка не деформирована, толщина ZP 15–20 мкм, перивителлиновое пространство не увеличено и без дебриса, первое полярное тельце не фрагментировано, овальной формы. Однако в практике ЭКО ооциты пациентов имеют различные морфологические особенности. Целесообразно указать в документации следующие особенности строения, при их наличии:

- atr атрезивный ооцит (с выраженными дисморфизмами оболочки и цитоплазмы), применяется для оценки ооцита до манипуляции с ним;
- deg дегенеративный ооцит (например, присутствует только зона пеллюцида, тотальная вакуолизация цитоплазмы и др.), применяется после проведения оплодотворения методом ИКСИ или витрификации;
- LPВ гигантское полярное тельце;
- giant гигантский ооцит, размеры которого более 200 мкм;
- vac наличие вакуолей в цитоплазме;
- SER агрегаты гладкого эндоплазматического ретикулума;
- gran грануляции цитоплазмы ооцита

GV	MI	MII
Незрелый ооцит на	Незрелый ооцит	Зрелый ооцит на
стадии	на стадии	стадии метафазы
зародышевого	метафазы 1-го	2-го деления
пузырька	деления мейоза,	мейоза, имеет
(герминативного	не имеет	первое полярное
везикула)	полярного тельца	тельце

Pисунок 1. Определение мейотической зрелости ооцитов человека в программах ЭKO

Пример MII, SER,vac

5. Общие правила оценки эмбрионов

Необходимо отметить, что выполнение следующих рекомендаций позволит стандартизировать оценку эмбрионов человека и минимизировать негативное влияние вредных факторов во время выполнения оценки:

- Морфологическую оценку эмбрионов любого этапа преимплантационного развития проводят по принятой в лаборатории стандартной операционной процедуре в одно и тоже установленное время;
- Время оценки эмбрионов любых стадий развития следует соотносить со временем введения триггера овуляции в протоколе стимуляции овуляции и со временем оплодотворения (таблица 1). В таблице дано рекомендуемое время оценки, оно может меняться в зависимости от клинической ситуации.

Таблица 1. Рекомендуемое время оценки ооцитов-зигот-эмбрионов (The Istanbul consensus, 2011)

Время оценки оплодотворения ооцитов и развития эмбрионов			
Оценка	Время после оплодотворения, ч	Стадия развития	
Оценка зигот	17±1	Пронуклеарная стадия, 2PN2PB	
Стадия слияния пронуклеусов	23±1	Примерно в 50% зигот должно произойти слияние пронуклеусов, до 20% могут быть на 2-клеточной стадии дробления	
Раннее дробление	26±1 для ИКСИ 28±1 после ЭКО	Дробление, 2 бластомера	
2-й день развития	44±1	Дробление, 4 бластомера	
3-й день развития	68±1	Дробление, 8 бластомеров	
4-й день развития	92±1	Морула	
5-й день развития	116±1	Бластоциста	

6. Оценка оплодотворения

Оплодотворение — это процесс, который включает серию событий, приводящих к объединению мужского и женского геномов в единой клетке — зиготе, дающей начало новому организму.

клинической практике первым событием, которое онжом идентифицировать в микроскопе после оплодотворения, является появление которое происходит 1.5–3 ч второго отонавиоп тельца, через оплодотворения. Мужской и женский пронуклеусы формируются через 6-8 ч после оплодотворения. Мембраны пронуклеусов исчезают примерно через 24 ч, и первое дробление происходит через 3 ч после исчезновения их мембран.

Микроскопическим признаком нормального оплодотворения является присутствие двух пронуклеусов и двух полярных телец. Рекомендуемый период оценки оплодотворения (зигот) составляет 16–18 ч после процедуры. Оценка числа, размера и положения проядрышек внутри пронуклеусов, согласно некоторым данным, может характеризовать дальнейший потенциал развития зиготы. Однако, на практике, оценку проядрышек проводят редко, их оценка не

является строго обязательной. Рекомендуемый протокол оценки зигот с проядрышками показан на рисунке 2.

В эмбриологической документации рекомендовано использовать следующие обозначения:

- PN пронуклеус; перед обозначением пронуклеусов указывается одна арабская цифра, обозначающая количество пронуклеусов (например, 0PN, 1PN, 2PN, 3PN). При количестве пронуклеусов более 3 вместо арабской цифры допустимо использовать приставку Multi (MultiPN).
- PB полярное тельце; перед обозначением полярного тельца указывается одна арабская цифра, обозначающая их число (например, 2PB).

Например, зигота с двумя нормальными пронуклеусами и двумя полярными тельцами с расположением проядрышек в соответствии с изображением (A) на рисунке 2 будет описана в протоколе культивирования: 2PN2PB Z1

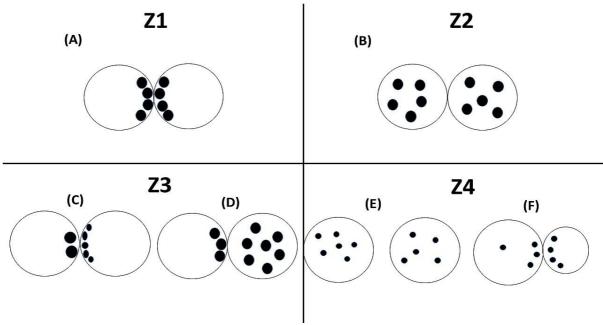


Рисунок 2. Рекомендуемый протокол оценки зигот (Scott et.al., 2000)

7. Оценка эмбрионов на стадии дробления

- 1. Оценка количества клеток. Ставится число арабскими цифрами соответствующими количеству бластомеров (отличать от фрагментов) (использованы материалы The Istanbul consensus, 2011)
- 2. Рекомендуемая классификация для оценки фрагментации эмбрионов человека на стадии дробления (использованы материалы The Istanbul consensus, 2011)

Оценка фрагментации	2-3 сутки
а эмбрион отличного качества	Фрагментация менее 10%
b эмбрион хорошего качества	Фрагментация 10—25 %
с эмбрион низкого качества	Фрагментация 25—50 %
d эмбрион плохого качества	Фрагментация более 50 % или тотальная вакуолизация
Deg Дегенерировавший эмбрион	Эмбрион с признаками гибели большей части клеток (темной цитоплазмой, разрушенными клеточными мембранами, аморфностью)

3. ОЦЕНКА РАЗМЕРОВ БЛАСТОМЕРОВ (использованы материалы The Istanbul consensus, 2011).

Дробление у человека асинхронное, поэтому при микроскопической оценке можно обнаружить любое число бластомеров: 2, 3, 4 и т.д. (при нормальном развитии стадии 3, 5 и т.д. бластомеров длятся значительно меньше, чем 2, 4, 8 — и потому наблюдаются реже). В то же время, стадии 3, 5 и т.д. бластомеров могу появиться вследствие аномального деления, при котором один бластомер делится непосредственно на 3 (DC-Direct cleavage, один из наихудших прогностических признаков, при котором эмбрион рекомендуется вообще не использовать), либо вследствие задержки/остановки деления части бластомеров (также плохой прогностический признак).

В отсутствие системы видеонаблюдения различить эти варианты можно далеко не всегда и только косвенно – по размерам бластомеров. При нормальном дроблении размеры бластомеров должны быть таковы:

Число бластомеров	Размеры бластомеров
2	Равные
3	2 маленьких, 1 большой
4	Равные

5	2 маленьких, 3 больших
6	4 маленьких, 2 больших
7	6 маленьких, 1 большой
8	Равные

Явные отклонения от указанного паттерна снижают оценку эмбриона. Также снижает оценку собственно неравномерное дробление — деление одной клетки на две с неравными размерами.

Наиболее негативную оценку следует давать трехклеточным эмбрионам с идеально равными бластомерами -3c. В остальных случаях следует снижать оценку на 1 пункт (т.е. от a-дo b, от b-дo c) и обозначать неравное дробление (uev) – например 7b (uev).

4. Оценка нуклеации бластомеров (использованы материалы The Istanbul consensus, 2011).

Бластомеры эмбрионов стадии дробления могут иметь более 1 ядра (mnb — мультинуклеация). Это является плохим прогностическим признаком и снижает оценку эмбриона на 1 балл — например, 5с (mnb).

В примечании можно указывать дополнительную информацию, такую как вакуолизация и грануляция (доказанного прогностического значения они не имеют):

- fr Наличие цитоплазматических фрагментов. Возможно обозначение степени фрагментации
- gr —грануляция цитоплазмы бластомеров.
- vac Присутствие вакуолей в цитоплазме клеток эмбриона.

Таким образом, оценка эмбрионов стадии дробления включает в себя 4 признака: количество бластомеров, степень фрагментации, равность/неравность бластомеров, наличие мультинуклеации.

В то же время, строгих рекомендаций по необходимости оценки эмбрионов на D2-3-4 нет. Это решается лабораторией в соответствии с их протоколами. Допустимо проводить оценку оплодотворения и далее оценку на D5.

8. Оценка эмбрионов на стадии компактизации (морула)

In vivo эмбрион человека перемещается по фаллопиевым трубам и попадает в полость матки на 4-е сутки. На этой стадии эмбрион компактизируется, формируется морула. Морфологически морула представляет собой единую массу трудно различимых клеток. Идеальная морула имеет компактную структуру без фрагментов.

В практической деятельности клинического эмбриолога допустимо использовать упрощенную классификацию, предложенную Тао с соавторами в 2002 г, либо модифицированную классификацию (Таблица 3). Оценки по этим системам имеют взаимно однозначное соответствие: M4 = Ma, M3 = Mb, M2 = Mc, M1 = Md. В целях единообразия оценок всех стадий развития мы рекомендуем использовать обозначения a-b-c-d.

Таблица 3. Рекомендуемая классификация для оценки эмбрионов человека на стадии компактизации (Тао et al., 2002, с модификациями)

а (М4 по Тао) — все бластомеры участвуют в компактизации, фрагментация отсутствует
b (М3 по Тао) — не менее 75% бластомеров компактизированы, эмбрион сферической формы
с (М2 по Тао) —50-75% бластомеров компактизированы, эмбрион несферической формы, с перетяжкой, с фрагментацией
d (М1 по Тао) - менее 50 % бластомеров компактизированы, эмбрион несферической формы, с фрагментацией

Например, обозначение морулы, где компактизировано менее 75% бластомеров – Мb или M3.

В эмбриологической документации для эмбрионов 4-го и последующих дней развития также можно использовать следующие обозначения:

- comp компактизация (используется для обозначения начала компактизации дробящегося эмбриона);
- cleav дробление (эмбрионы без признаков компактизации);
- саv кавитация (используется для обозначения начала кавитации компактной морулы) например, Mcav a (M4cav), Mcav b (M3cav);
- vac присутствие вакуолей в эмбрионе на стадии компактизации;
- fr наличие цитоплазматических фрагментов.

9. Оценка эмбрионов на стадии бластоциты

Оценка бластоцист базируется на анализе клеток трофэктодермы, внутренней клеточной массы и размера полости. Ранние бластоцисты имеют еще достаточно толстую блестящую оболочку, которая растягивается и истончается по мере развития эмбриона на более поздних стадиях.

Эмбрионы с полостью 4–7 сут развития рекомендовано оценивать в соответствии с классификацией, предложенной Дэвидом Гарднером с соавторами в 1999 г. (таблица 4).

Таблица 4. Рекомендуемая классификация для оценки эмбрионов человека на стадии бластоцисты (Gardner D.K., Schoolcraft W.B., 1999)

	Оценка степени экспансии бластоцисты (формирование полости		
	бластоцисты)		
1	Морула с ярко выраженной полостью, но в которой пока невозможно		
	оценить другие клеточные компоненты (M4Cav)		
2	Бластоциста, полость которой занимает половину или более объема		
	эмбриона		
3	Полная бластоциста, полость заполняет эмбрион полностью, но		
	блестящая оболочка не истончена		
4	Экспандированная бластоциста, объем полости больше, чем размер		
	ранних эмбрионов, блестящая оболочка истончена		
5	5 Вылупляющаяся бластоциста, трофэктодерма начала выходить через		
	блестящую оболочку		
6	Вылупившаяся бластоциста, полностью вышедшая из блестящей		
	оболочки		

Оценка клеток внутренней клеточной массы		
A	Плотно упакованная масса клеток, много клеток	
В	Неплотно сгруппированная масса клеток, немногочисленные клетки	
C	Внутренняя клеточная масса выражена слабо или отсутствует	
Оценка клеток трофэктодермы		
A	Много клеток формируют сплошной эпителий, клетки одинаковой округлой формы, плотно прилегают друг к другу	
В		
C	Трофэктодерма представлена несколькими сильно вытянутыми клетками, внутри клеток дегенеративные фрагменты	

Графическое изображение рекомендуемой классификации представлено на рисунках 3 и 4.

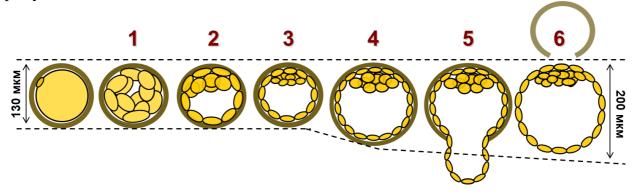


Рисунок 3. Схема оценки степени экспансии эмбриона на стадии бластоцисты (рисунок Шафеи 2008 по Gardner et al., 1999)

Следует отметить, что система оценки (*Gardner et al., 1999*) подразумевает однозначное разделение бластоцисты на трофэктодерму и внутреннюю клеточную массу и их независимую оценку, которые невозможны для стадии 1 и могут быть затруднительны для стадии 2. На этом основании, бластоцисты стадий 1 и 2 допустимо оценивать одной буквой, аналогично эмбрионам стадии дробления и морулы: А – отличный, В – хороший, С – удовлетворительный, D – плохой. В этом случае, во избежание путаницы между бластоцистами и дробящимися эмбрионами, стадию развития бластоцисты рекомендуется предварять буквами BL – например, BL1A (бластоциста стадии 1 отличного качества), BL2B (ранняя бластоциста качества B) и т.д.

Для более поздних бластоцист обозначения типа BL3AB, BL6AA также допустимы, но могут быть сокращены до 3AB, 6AA и т.д.

Например, бластоцисту, полностью вышедшую из блестящей оболочки, с многочисленными клетками трофэктодермы и компактной внутренней

клеточной массой, в эмбриологической документации следует обозначать 6AA или BL6AA.

Если эмбриону человека выполняли процедуру вспомогательного хетчинга (на любой стадии развития), в документации рекомендовано указать «АН», например, ЗАА (АН).

Следует отметить, что качество клеток трофэктодермы имеет большее значение для клинических исходов по сравнению с качеством внутренней клеточной массы.

При оценке бластоцисты после проведенного вспомогательного хетчинга следует ориентироваться не на диаметр и толщину ZP, а на степень экспандирования и количество клеток трофоэктодермы.

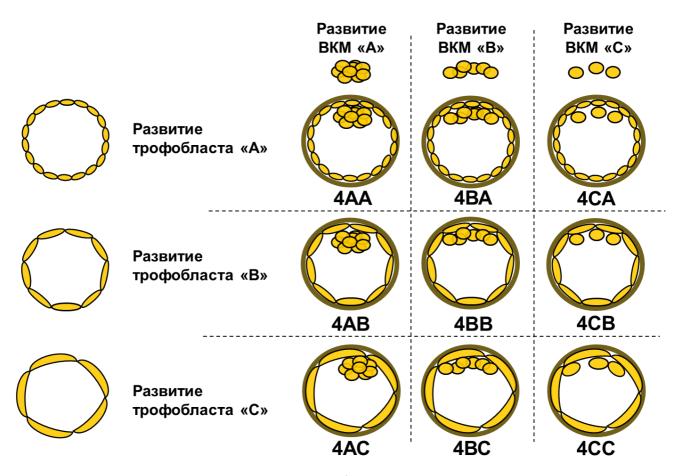


Рисунок 4. Схема оценки клеток трофэктодермы и внутренней клеточной массы эмбриона на стадии бластоцисты (рисунок Шафеи 2008 по Gardner et al., 1999)

10. Заключение

Авторы надеются, что представленные рекомендации позволят стандартизировать работу в эмбриологических лабораториях по оценке биологического материла и окажут информационную поддержку специалистам с целью обеспечения единообразия медицинской документации.

11. Литература

- 1. Alpha Scientists in Reproductive Medicine and ESHRE Special Interest Group of Embryology. The Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting. Hum Reprod. 2011 Jun;26(6):1270-83. doi: 10.1093/humrep/der037. Epub 2011 Apr 18. PMID: 21502182
- 2. The Vienna consensus: report of an expert meeting on the development of ART Laboratory perforance indicators, ESHRE Special Interest Group of embryology and Alpha Scientists in Reproductive Medicine, 2017
- 3. Scott L, Alvero R, Leondires M, Miller B: The morphology of human pronuclear embryos is positively related to blastocyst development and implantation. Hum Reprod 2000, 15:2394–2403
- 4. Руководство по клинической эмбриологии /Пекарев В.А., Шурыгина О.В., Кодылева Т.А., Булдина О.Н., Тугушев М.Т. // Самара, Издательство «АСГАРД», 2015, 407 с
- 5. Tao J, Tamis R, Fink K, Williams B, Nelson-White T, Craig R. The neglected morula/compact stage embryo transfer. Hum Reprod 2002;17:1513-1528
- 6. Gardner DK, Schoolcraft WB. In vitro culture of human blastocysts. In: Jansen R, Mortimer D, editors. Toward Reproductive Certainty: Fertility and Genetics Beyond 1999. UK: Parthenon Publishing London; 1999. p. 378-388
- 7. Корсак В. Руководство по клинической эмбриологии: сделано в МЦРМ / Руководство для врачей, специальное издательство медицинских книг, 2011,224 с.
- 8. Шафеи Р.А. Репродуктивные технологии/Курс лекций на Биологическом факультете МГУ им. М.В. Ломоносова, 2008.